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REAL-TIME IMPLEMENTATION OF THE KALMAN FILTER
FOR TRAJECTORY ESTIMATION

a I INTRODUCTION

The purpose of this technical memorandum is to describe the results

of a study concerned with real-time implementation of the Kalman filter

for estimating ballistic trajectories. As shown in previous studies ,'

performed by the Information and Control Laboratory in support of the

NIKE-X system, the performance of the Kalman filter for the trajectory

estimation task is excellent; however, the computation time required

by this filter is relatively large. On the Univac 1108 computer, the com-

putation time per filter iteration is approximately 0.010 sec for endo-

atmospheric estimation; hence, with a data rate of 20 measurements per

second, the filter runs about 5 times faster than real time. For exo-

atmospheric estimation (in which the filter has 6 states instead of 7,

and is programmed in double precision--see Sec. VI), the filter's itera-

tion time is approximately 0.011 sec; hence, with a data rate of one

measurement per second, the filter runs about 100 times faster than real

time.

For real-time estimation of multiple targets, the computation speed

of the Kalman filter may be inadequate (at least for endoatmospheric

trajectory estimation). Thus, it is essential to improve the computa-

tional efficiency of the filtering algorithm; this should be done with

a minimum amount of degradation in filter performance.

In Sec. II, the problem formulation is presented; this consists

of the equations of motion for the ballistic reentry vehicle and the

radar measurement equations. The equations for the extended Kalman

filter and a flow diagram depicting its operation are given in Sec. III.

In Secs. III and IV several approaches that may be used to modify

the Kalman filtering algorithm in order to reduce the computational

requirements are described; these include

References are listed at the end of the report.



(1) Use of a precomputed approximation to the weighting matrix

in the filter equations (this also eliminates the necessity

of calculating the covariance matrices); i.e., the weighting

matrix is precomputed off-line, rather than calculated recur-

sively on-line.

(2) Increasing the sample interval (data processing interval)

At, the computation speed of the filter relative to real

time increases as this parameter increases.

(3) Updating the weighting matrix and the covariance matrices at

inevl fAT sec, where At=N t1, i.e., the weighting
At

matrix is only updated every N iterations and is held con-

stant in the filter equations for these iterations, before

being updated anew. This computational algorithm will be refer-

red to as the piecewise-recursive Kalman filter.

The first approach was studied extensively in Ref. 1; the other

two approaches will be investigated in considerable detail in this report.

These approaches were evaluated and compared by estimating the states of

a ballistic trajectory based on simulated radar measurements that are

corrupted by noise; the simulated trajectories were generated from an

accurate model of reentry dynamics. The numerical results that were

obtained in this study are presented in Sec. V (for endoatmospheric

estimation) and Sec. VI (for exoatmospheric estimation). Estimation

errors in position, velocity, and acceleration, and the actual and estimated

B are plotted as functions of time for the various computer runs. In

addition, the computation times (on the Univac 1108) per iteration for

the different filter algorithms are presented.

For real-time estimation of multiple targets, the piecewise-recur-

sive Kalman filter is the most promising approach of those considered in

this report. For endoatmospheric estimation, it is possible to filter

measurements at a computational speed (on the Univac 1108) that is approxi-

mately 20 or 25 times faster than real time (for At = 0.05 sec, AT = 0.5

sec or At = 0.10 sec, AT = 0.5 sec, respectively) and yet obtain accuracy

approaching that of the fully implemented Kalman filter; for exoatmospheric

estimation, the computational speed (on the Univac 1108) is approximately

500 times faster than real time (for At = 1.0 sec, AT = 20 sec).
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The last section of the report summarizes the results of this

study and indicates areas for future work.

II PROBLEM FORMULATIaN

A. Equations of Motion for the Ballistic Reentry Vehicle

A model for the equations of motion for the ballistic reentry

vehicle is taken to be*

2 1 Po x
-=-2w(k cos - sin ,) + W x Vic -S2 r r I

2w( sin t) sin tf(r + z) cos - y sin 2] - g - g _o 2 Sr

2(.x cos )+ w cosO [(i + z) cos .- y sin Q -] Vz - g~2 8r 1

where x, y, z are the radar-centered cartesian coordinates (ft) of the

ballistic missile, and

-3
p atmospheric density (slug/ft )

2
ballistic coefficient (lb/ft2 )

" V= +7 +

= missile velocity (ft/sec)
• r 2

0 2~r 1

= gravitational acceleration acting upon the missile (ft/sec2)

2
g gravitational acceleration at sea level (ft/sec )

r earth radius (ft)
0

y2 2r x2 + y+ (z + 0 ) 2 _

= distance from center of the earth to the missile (ft)

w = rotation rate of the earth (rad/sec)

= latitude of the radar site.

A derivation of these equations is presented in Memorandum 37 and, hence,
will not be repeated here.
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The x and y axes point east and north, respectively, and define a plane

tangent to the earth at the radar site; the z axis is perpendicular to

this plane and gives the vertical direction at the radar site. The

density p is a function of environmental factors and the altitude h,

which is given by

h=r r [x 2 + y2 + (z+r)] r . (2)
1 0 0 0

The ballistic coefficient B is a function of altitude, Mach number,

and unknown reentry vehicle parameters.

Finally, it should be noted that the above model assumes a rotating,

spherical earth with the ballistic missile taken to be a point mass.

That is, the model given by Eqs. (1)includes coriolis terms (those con-
2taining f), centripetal terms (those containing w ), gravity gradient

terms (those containing g), and drag terms (those containing 8)-

Because $ is highly dependent on the characteristics of the

missile being tracked, it must be estimated together with the position
and velocity state variables. This estimate is also necessary for pre-

diction of the future missile trajectory. As shown in Ref. 1, the per-

formance of the estimator is significantly improved if the quantity

p/B is estimated, where 8 is assumed to be locally constant and p

is assumed to be a locally exponential function of the altitude h, i.e.,

it is assumed that p has an altitude gradient,

= - pK (3)

in which K is a specified constant over each of several ranges of

altitude (h). Hence, the differential equation that models the behavior

of the additional state variable p/ is given by

K ( 8
=-K rl(4)

r

where h is obtained from Eq. (2).
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The state vector x, which describes the trajectory of the ballistic

missile, thus has seven components:

X -x X4 =A

x 2 =y x x -p

2  =7

x3 =z x 6 =

The nonlinear system equations (1) and (4) can then be written in state-

variable form as follows:

x
4

x5

x62 
x

= f(x) = -2w(x 6  cos 2C - x5  sin 2) + Wt 1 - 7x7 goVX4  " g ,(6)

-2w(x sin w 2 sin 3[(r sin r 2

2 x3+o2w(x4  cos 0)+ )o cos 2  sin 1,] - X7 - g x rr

x1 x4 + x 2 x5 + (x 3 + ro)x 6

-Kx 7  r

where f(x) is a seven-dimensional vector function and

Vj ,X

r = Ix2 +x2 + (X + r ) 2
1 2 3

The nonlinear differential equation (6) is inexact because p and

8 do not exactly satisfy the assumptions made above, and also because

the reentry vehicle has additional degrees of freedom that have been

neglected. The actual trajectory of the ballistic missile (i.e., the

trajectory to be estimated) is generated by a set of equations that are

more accurate than the model described in Eq. (6). In order to account

5



for these inaccuracies as well as actual system disturbances, a random

forcing function is introduced into Eq. (6), yielding

= f(x) + w, (7)

where the seven-dimensional vector w' is assumed to be a zero-mean,

white Gaussian noise process.

B. Radar Measurement Equations

Measurements of the target vehicle's position are made every At

seconds by means of d phased-array radar. These measurements ere made

of the angles , y, and the range r, which are defined in the radar-

face coordinate system of Fig. 1. The radar-face coordinates x; , x2, x3

are related to the ground coordinates xi, x2, x3 (or x, y, z) by the

following two rotations: a rotation of 900 - T from the vertical (x3),

and a rotation of E from north (x2). Thus,

X"3

TARGET

90S - a iG

I X'2

\,RADAR

FIG. I RADAR MEASUREMENTS
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F J M[x2] (8)

Ix'

where

Cos sin -~sin C0s sin E

M sin sin cos cos cos 2F9

-COS sin

and from Fig. 1,

x' = r sin c

Cx2 = r sin -Y
x3  2 2 s

x = rtl- sin - sin2 YJ (10)

Hence, the position coordinates xi, x2 , x3  are related to the

radar coordinates r, a, y by Eqs. (8), (9), and (10), with T and F

being known constants determined by the radar configuration. These non-

linear relations can be expressed concisely as

ri

L) (x I x 2, x)3 mh~x W1

where h(x) is a three-dimensional vector function. Thus, the nonlinear

measurement equation is given by

z = h(x) + v , (12)

where z is a three-dimensional vector containing the noise-corrupted

measurements of r, y, y and the radar measurement noise v is assumed

to be a zero-mean, white Gaussian noise process.
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III EX.rENDED KAIIAN FILTER

A. Estimation Equations

The Kalman filter equations specify an estimate of the state of a

linear, time-varying dynamical system observed sequentially in the

presence of additive white Gaussian noise; the state estimate obtained

at each time is the maximum likelihood estimate conditioned on all

measurements made up to that time.4 The Kalman theory cannot be applied

directly to estimating the state of a ballistic reentry vehicle on the

basis of noise-corrupted radar measurements, because the equations of

motion (7) governing the missile and the measurement equation (12) are

nonlinear functions of the state x. However, by first making the ap-

propriate linearizations, the Kalman theory can be applied to the non-

linear case. The linearization equations together with the basic Kalman

filter equations constitute what is referred to as the Extended Kalman

Filter. As shown in Refs. 1 and 2, this approach has been successfully

applied to trajectory estimation problems in the NIKE-X system. Justi-

fication for this approach and a derivation of the extended Kalman filter

is presented in Ref. 5.

Since the extended Kalman filter is to be implemented on a digital

computer, it will be described in its discrete-time form in this

memorandum. The discrete time k will refer to the actual time k At,

where At is the sampling interval (data processing interval). Through-

out this report, q(i/j) will denote the estimate of the state x at

time i, conditioned on the measurements through time J, and P(i/j)

will denote the covariance of the error in this estimate; i.e.,

R(i/j) = Etx(i)/z(j),z(j-l),...,z(l);_(0/0), P(O/O)]

T
P(i/j) = E[x(i)-R(i/j)1fx(i)-_(i/j)1 /z(j) ,z(j-l),... ,z(l) ;_c(00) ,P(O/O) I,

(13)

where (0/0) is the a priori state estimate and P(O/O) is its error

covariance.

The measurement noise v given in Eq. (12) is a white Gaussian

random variable with

8



E(v(k)] = 0

EIv(k) v(k)T] = R(k) (14)

The continuous random disturbance wl given in Eq. (7) will be replaced

by an equivalent discrete random disturbance w, which is a white

Gaussian noise process with

E[w(k)] 0

T
E[w(k) w (k)] = Q(k) (15a)

The value of Q(k) is a function not only of the time k, but also of

the sampling interval At. If the continuous noise w' has a covariance

given by E[w'(t) wIT(a)] = Q'(t) 5(t - a), where 6(') is the Dirac

delta function, then in the discrete-time form of the missile's dynamical

model, the discrete noise w will have (if this model is linear) a co-

variance given by

Q(k) = Q '(k) At . (15b)

The initial state x(O) is assumed to be a Gaussian random variable

with

E[x(0)] = (0/0)

H[ix(O) - _^(0/0)1Hx(O) - R(0lo)1T] = P(010) (16)

Furthermore, it is assumed that v(k), w(k), and x(0) are mutually

uncorrelat ed.

The resulting estimation equations, which are given by the extended

Kalman filter, can be considered as consisting of two parts: prediction

and correction.

1. Prediction

Given .(k/k), the estimate of the state at time k, and the

assumption that E[w(k)] = 0, the predicted state can be obtained from

the nonlinear equations of motion (7):

X(k+l/k) = R(k/k) + f[I(k/k)]At , (17)

with the covariance of the error in the state prediction R(k+l/k) given by

More accurate integration formulas can be used if necessary.

9



P(k+I/k) = (k+l,k) P(k/k) T (k+l,k) + Q'(k) At, (18)

where (k+l,k) is obtained by linearization of Eq. (7) about the

state estimate .(k/k)--i.e.,

(k+l,k) = I + F[ (k/k)]At (19)

in which F is the 7 x 7 matrix with components

f (x)

F (x) - (20)
ij- bx.J

From Eq. (6),

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

F F4 1  '42 43 '44 45 F46 F47 (21)

F51 F52 F53 F54 F55 F56 F57

F F F F F F F
61 62 63 64 65 66 67

FF F F F F F
71 72 73 74 75 F76 77

where

2 -1 2 -3F4 = w - "1 + 3g x I r

41 -gr1 1

F 3-3
42 gx 1 x 2 r 1

-3
F =3 g x(X 3 + r )r3

F =- x gV- x g x 2 V- I

44 7 0 7 o 4

F 45 = 2w sin . - x7 go x4 x5 V-

F46 " - 2w cos - x 7 go x4 x6 V-

F47 = - 4 4  90

10



F 3 gx -3

51 g xx 2 r1

F= 2 si 2  2 -3 -1
52 sin + 3 g x2 r1  g r

F - 2 -3F 53= - ( sin cos + 3g x2 (x 3 + ro)r 1

F =- 2w sin -x 7 g x4 x 5 v
54 7o4X

F55 = - x7 go x2 v 1 -jx Vg

F5 6  -x 7 x5 x g6 
- 9

F Vx g57 5  0

-3
F61 -3 g xI(x 3 +ro)r3

2 -s62 - s in , cos 1, + 3 g x2 (x 3 + ro)r-3

2 2 2 -3 -1
F =w cos + 3g(x 3 + r r -g r
63 3 0

F =2w cosL-i x x4 x6 V 1

64 746

F6 5 - x 7 x5 x6 V

F -i x x2 V - x Vg66 7 6 0 7 0

F =- V x go

-1

Fr -x 7 K r + x1  x6 K r(1r3x K 1
71 7 1 4 7 14N x2x5 +3( 6

-13

F 72 X7 K r 1x5+ X 7 x 4+ X2 x 5+ (X3+r )x K r 1x2

F3 x 7 K r 1  x 6 + X 7 (x 1x 4+ 2 x 5 + (X3 +ro )x 6 K r1 (x3 + r 0

F7 4 =-x 7 Kr 1 x1

F -x 7 Kr1175 7 1 2



-i
F =- x K r I (x + r)

77 7 14 2 3 06F F77 =-K r i1 [x 1 x 4 + x 2 x 5 +(x 3 r. o)x6]

2. Correction

The state prediction (k+1/k) is then corrected by using

z(k+l), the actual measurement at time k+l, and ^(k+i/k), the pre-

dicted measurement for time k+l, which is obtained from the nonlinear

measurement equation (12) by using the assumption that E[v(k+l)] = 0:

i(k+l/k) = h[_(k+l/k)) (22)

Hence, the estimate of the state at time k+l is given by

_(k+1/k+l)= ^(k+i/k) + W(k+l)[z(k+l) - i(k+I/k)] , (23)

where the weighting matrix is
W(k+l) P(k+i/k)HT(k+l)fR(k+l) + H(k+l)PTk+1/k)HT(k+l) (24)

and H(k+l) is obtained by linearization of Eq. (12) about the state

prediction (k+l/k)--i.e.,

H(k+l) = H[R(k+l/k)] (25)

in which H is the 3 x 7 matrix with components

Hhi (x) (26)
Hij(x) 

- ax.

From Eqs. (8) through (11),

bhj H 11H 12H 130 0 0 0l

H± Ii H H 11 0 0 0 o0 (27)

HXJ H2H 0 0 0 0
31 32 33 0

where the H are most conveniently written in terms of the radar faceij

coordinates x1 , x2 9 x3

12



xx
H 1 Cos + x2 sin T sin

11 r r

+-X3 COs T Sin
r

12= 2) ( 3) Jcos
-,I( + ( COS T i

x3  -- 2
H (x,)2 + (x;)2 ] sin T sin

3
H1 2 ( 1X) 2 +() 2 snin

-- x +( cos .r sin .

x3 / I x3

H21 = - - sin +--2 sin T cos +- x3 Cos r cos21 r r r

H ( + (" sin [2 2 j2 3

2= [X; + )1 COS sinl T

x3
S + XI

H 3
Hx /2-3 + Xs g si

r r

I

2 [- ) ) COS T COH 2 OST -si

H 3  / +

2i [(X + (x ) sinT

3

and

r [( x /)2 + ( )2J +i Tx
31



For use in Eq. (27), the values of x", x are determined from the

state prediction R(k+i/k) by the linear transformation M -
, where M

is given in Eq. (9):

x' ix2 (kk-1)

2 =141 (28)
x3 / J3 (k/k-l)

The covariance of the error in the estimate ^(k+l/k+l) is

P(k+l/k+l) = [I - W(k+l)H(k+l)]P(k+l/k)

= P(k+l/k)-P(k+l/k)HT(k+l) [R(k+l)+H(k+l)P(k+I/k)HT(k+l)I-

H(k+l)P(k+l/k) . (29)

Equations (17), (18), (23), (24), and (29), together with the

matrices defined in Eqs. (19) and (25), comprise the extended Kalman

filter. The a priori state estimate ^(0/0) and its error covariance

P(0/0) are used to initialize these recursive equations. The measure-

ment noise covariance R is specified by the characteristics of the

phased-array radar model. The random disturbance covariance Q is

determined in order to compensate for inaccuracies in the model of the

equations of motion (see Secs. V and VI).

It should be noted that in the extended Kalman filter, the

nonlinear equations f7) and (12) are used to obtain the state prediction

[Eq. (17)1 and the predicted measurement [Eq. (22)], respectively. The

linearization of Eqs. (7) and (12), used to obtain t and H, is only

employed to calculate the covariances and the weighting matrix in

Eqs. (18), (24), and (29).

B. Basic Flow Diagram

The basic equations of the extended Kalman filter (see Sec. III A)

can be displayed in the form of a flow diagram, which is a simplified

pictorial representation of the digital computer program that has been

developed. This is shown in Fig. 2, where k is the maximum numbermax

of times that the filter processes the measurements. Thus, there are

seven major computations involved in each filtering iteration--as in-

dicated by the seven numbered blocks in Fig. 2 (these will be referred
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SINITIALIZE FILTER:

E(AT Q() 0, INPUTA
CALCULATE LINEARIZED DIFFERENTIAL-EQUATION MATRIX,

EQ. (21[: F . i a-iUc--

( CALCULATE TRANSITION MATRIX, EQ. (19):

k +'€. 1, k) - 1+ F t

O CALCULATE PREDICTED STATE, EQ. (17):

(k 1IA) -1 . /k) + i_ lk,,i,

RANDOM
NEXT ITERATION . CALCULATE ERROR COVARIANCE IN PREDICTED STATE, EQ. (18): DISTURBANCE

COVARIANCE:
k-k+ I P(k + IA) - ,0(k - 1,k)P(k/k),T(k + 1,k) + Q(k) Qlk)

, ,EASUREMENT
CALCULATE WEIGHTING MATRIX, EQS. (24) AND (27): NOISE

W(k + ) - P(k . IA)HTe + IXR(k I1) . Hlk + )P(k + I/k)HJ(k + 1))I OJ VRIANCE

CALCULATE STATE ESTIMATE, EQ. (23): MEASUREMENT:

(c + IA + i - Ak+IA) + W(k+l)[z(k + 1) - A( 1/IA)) (k + 1)

G CALCULATE ERROR COVARIANCE IN STATE ESTIMATE, EQ. (29):

P(k + IA + 1) - (I- W(k + i)H(k + 1))P(k + IA)

NO YES
Itk STOP

FIG. 2 FLOW DIAGRAM FOR EXTENDED KALMAN FILTER
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to as Steps 1 through 7). Since the state vector of the ballistic

missile has seven components, some of the calculations shown in Fig. 2

require considerable computation time.

In the next section, the contribution made by each of the seven

basic calculations to the total computational time for one filtering

iteration will be found. These timing estimates provide the basis for

making modifications in the filter design to decrease the average compu-

tation time per iteration.

C. Computation Time Considerations

In a previous study,1 when the extended Kalman filter equations

were implemented on the IBM 7090 for endoatmospheric trajectory estima-

tion, the filter ran approximately 6 times slower than real time with a

data rate of 20 measurements per second (for a single target); i.e., it

took 6 seconds of computer time to process the measurements obtained in

1 second. Since the speeu of the Kalman filter is computer-dependent,

one can improve the speed with a faster computer. In fact, with the same

data rate of 20 measurements per second, the Univac 1108 runs approxi-

mately 5 times faster than real time (for a single target) for endo-

atmospheric estimation. Even at five times faster than real time (for

a single target), the speed of the extended Kalman filter may still be

inadequate for some situations. For instance, if n missiles must be

tracked and if the speed of the Kalman filter is 5 times real time,

then for n > 5, the filter cannot compute state estimates for all of

the n missiles in real time (at a data rate of 20 measurements per

second).

For exoatmospheric trajectory estimation (for which the filter has

six states instead of seven and is progranmmed in double precision--see

Sec. VI), the Univac 1108 runs approximately 100 timea faster than real

time (for a single target) with a data rate of one measurement per

second.

Thus, particularly in a multi-threat situation for endoatmospheric

estimation, it is essential to improve the computational efficiency of

the extended Kalman filter. This should be done with a minimal amount

of degradation in filter performance. For ballistic-trajectory
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estimation, where the dynamical description is given by Eqs. (6). (7),

and (12), we know the particular structure of the linearized differential-

equation matrix F, the transition matrix , the linearized measurement

matrix 11, the random disturbance covariance Q, and the measurement-

noise covariance R. Therefore, we can take advantage of this knowledge

by writing a computer program, which reproduces the flow diagram (Fig. 2)

in a computationally efficient manner.

In the extended Kalman filter program, which has been developed,

the seven major computations per iteration given in Fig. 2 involve

various numerical operations as listed in Table I.

Table I

ARITHMETIC OPERATIONS FOR THE EXTENDED KALMAN FILTER
(ENDOATMOSPHERIC CASES)

COMPUTATIONAL NUMBER OF NUMBER OF

OPERATION MULTIPLICATIONS ADDITIONS NUMBER OF
OR OR SQUARE ROOTS

(see Fig. 2) DIVISIONS SUBTRACTIONS

* CALCULATE LINEARIZED DIFFERENTIAL-
EQUATION MATRIX, EQ. (21) 89 31 2

CALCULATE TRANSITION MATRIX, 28 7 0
EQ. (19)

CALCULATE PREDICTED STATE, 30 17 0
EQ.(17)

O CALCULATE ERROR COVARIANCE
IN PREDICTED STATE, EQ. (18) 693 693 0

CALCULATE WEIGHTING MATRIX,
EQS. (24) AND (27) 102 65 0

CALCULATE STATE ESTIMATE,
EQ. (23) 21 42 0

( CALCULATE ERROR COVARIANCE IN 147 147 0
STATE ESTIMATE, EQ. (29)

TOTALS 1110 1002 2

Table I applies to endoatmospheric estimation; for exoatmospheric

estimation, a comparable table could be obtained.
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The enumeration of arithmetic operations in Table I gives an indication

of the distribution of the total computation time per iteration among

the seven basic calculations. For instance, if it can be assumed that

the operation of multiplication (or division) requires a computation

time of an order of magnitude larger than that for an addition (or

subtraction), then the calculation of the predicted error covariance

(Step 4) takes about 63% of the total computation time. Clearly, the

error covariance matrix calculations of Steps 4 and 7 are the most

involved.

The next section discusses various approaches that may be used to

modify the Kalman filtering algorithm in order to reduce the computational

requirements. Particular emphasis is placed upon simplifying and modi-

fying the two error covariance calculations, since they are the most

time-consuming calculations in the Kalman filter.

D. Approaches to Reducing the Computational Requirements

One approach to reducing the computational requirements of the

Kalman filter was discussed in detail in Ref. 1. There an approximation

to the weighting matrix W(k) was precomputed off-line, rather than

calculated recursively on-line. The weighting matrix values for repre-

sentative trajectories are then stored in the computer memory. The

precomputed weighting matrix technique has some disadvantages. First,

the weighting matrix W(k) not only is a function of the iteration time

k, but it also is altitude-dependent. Second, W(k), even for the same

altitude, is dependent to some degree upon the geometry of the trajectory

and the ballistic coefficient (at lower altitudes). Consequently, for

accurate estimation, many representative weighting-matrix histories

should be stored in memory and employed accordingly. The computational

advantages of the Kalman filter using a precomputed weighting matrix are

impressive, however. In fact, for endoatmospheric estimation, the speed

of this filter is approximately 15 times that of the fully implemented

Kalman filter.

Another approach for improving the real-time capability of the

Kalman filter is to decrease the data rate until it falls within the

filter's real-time capability. One disadvantage of this approach is that

18



the estimation is based upon less data and, thus, is inherently less

accurate. As At, the time between measurements, is increased, the

calculations yielding (k+l,k) and ^(k+l/k) should be refined so

that their accuracy is not impaired; these refinements consume some of

the computational speed gained by decreasing the data rate. Additionally,

the linearization assumptions for the extended Kalman filter may no

longer be valid for large values of At. Clearly the speed of the Kal-

men filter relative to real time is proportional to At, so that if the

filter is 6 times slower than real time for a data rate of 20 measure-

ments per second (At = 0.05 sec), then it will be faster than real time

only for data rates less than 3.33 measurements per second. In Ref. 1,

it was shown that the performance of the extended Kalman filter for

endoatmospheric estimation was not markedly affected when the data rate

was decreased by up to a factor of 5 from a basic data rate of 20

measurements per second. Some further results on this approach will be

presented in Secs. V and VI.

IV PIECEVITSE-RECURSIVE KALMAN FILTER

In this study we have combined the advantages of both of the

approaches discussed in Sec. III D. The filter algorithm considered

here calculates the weighting matrix W(k+l) every AT seconds, and

uses this weighting matrix for calculating the state estimate (i/i)

at intervals of At sec for i = k+l, k+2, .... k+N, where AT = N a 1.
At

This is equivalent to calculating W(k+l) at time k+1 and retaining

this value of the weighting matrix (to be used in computing the state

estimate) for the times k+l, k+2, ..., k+N, and then calculating

W(k+(N+1)] anew. The design parameters of the filter are then At, the

sample interval (data processing interval), and AT, the interval between

weighting-matrix calculations. This filter has a "piecewise-precomputed"

weighting matrix and its data rate may also be varied. Thus, the computa-

tional advantages of both precomputation and data-rate reduction can be

achieved. This algorithm also avoids the off-line nature of a Kalman filter

that uses a precomputed approximation to the weighting matrix; in this

approach, the weighting-matrix calculations are performed recursively at

intervals of AT seconds. This computational algorithm, which will be

referred to as the Piecewise-Recursive (Extended) Kalman Filter, will be

described more completely below.

19



The modified Kalman filter algorithm described above operates as

follows: In the first cycle, the equations for the state prediction

and estimate are computed just as they are for the fully implemented

Kalman filter [see Sec. III A, Eqs. (17), (22), and (23)],A( I/k) = A(k/k) + fkR(k/k)It (30)

X(k+l/k+l) = k(k+l/k) + W(l)[z(k+l) - _(k+i/k)] (31)

k 0, 1, .... N-I

The weighting matrix W(l) for these N iterations is obtained from

Eqs. (18) and (24),
T .- I

7(0) = P(I/0)HT(1)[R(l) + H(l) P(l/0)H (1)j (32)

where

P(I/0) = ,(i,0) P(0/0) T( 1 ,0 ) + Q'(O)At (33)

and

(1,0) = 1 + F[R(0/0) t

The calculations in Steps 1, 2, 3, 4, 5, and 7 of Fig. 2 are not done

for k = 1, 2 .... , N-I.

Before proceeding to the next cycle, this algorithm requires that

P(N/N), the covariance of the error in the state estimate R(N/N) at

the end of the previous cycle, be computed. As shown in Ref. 6, this

covariance can be obtained by solving the recursive relations:

P(k41/k-l) = i- W(1)H(k-I)] P(k-I/k) il - W(1)H(k-.L)]

W(1)R(k+l)W T(1) (34)

T
P(k+l/k) = .(k+l,k)P(k/k)M (k+l,k) + Q'(k)At (35)

k = 0, 1 ..... N-i

However, this calculation of P(N/N) defeats the very purpose of the

piecewise-recursive Kalman filter--namely, to reduce the computation

,
These relations exactly define the propagation of the covariance for
either optimal or sub-optimal values of the weighting matrix.
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time. Therefore, simplifications for or approximations to Eqs. (34) and

(35) are essential.

The approximation made here is that we can consider the filtering

done at the times k = 1, 2, ..., N as constituting a presmoothing of

measured data. In effect, it can be assumed that at the end of the time

interval [0, AT], where k = N, one measurement (with an appropriately

reduced noise covariance) is processed. It can be shown that for the

most optimistic conditions this reduced measurement noise covariance is

given by

* R(N)
R (N) = -N (36)

where R(N) is the average value of the measurement-noise covariances

for the times k = 1, 2, ..., N (AT = NAt); for practical purposes,

R(N) is taken to be equal to R(N). It is asserted that R (N)

represents (approximately) the effective measurement noise over the

interval t0, 'AT], if all N measurements are processed by the Kalman

filter.

Using this reduced measurement-noise covariance, P(N/N) is then

determined [see Sec. III A, Eqs. (18) and (29)) from the equations

T R(N) T -1
P(N/N) = P(N/O) - P(N/0) H (N) [N- + H(N) P(N/O) H (N)]N

H(N) P(N/O) , (37)

where

P(N/0) = (N,O) P(0/O) MT(NO) + Q'(O) NAt (38)

and

6.(N,O) = I + F[R(O/O)]NAt

This approach avoids the recursive solution of P(N/N) and has been

found to yield satisfactory filter performance as shown in Secs. V and

VI.

At k = N, the cycle is repeated; i.e., the state prediction and

estimate are given by

(k+l/k) =(k/k) + f[(k/k)]At (39)
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R(k+l/k+l) = _R(k+/k) + W(N+)[z(k+l) - _(k+/k)] (40)

k =N, N+l, ... , 2N-1

The weighting matrix W(N+l) for these N iterations is obtained as

W(N+l) P(N+l/N) HT(N+1)[R(N+) + H(N+l) P(N+l/N) HT(N+l)]I 

where

P(N+I/N) = (N+1,N) P(N/N) T(N+lN) + Q'(N)At (42)

and

(N+I,N) = I + F[R(N/N)]At

Again, the computations in Steps 1, 2, 4, 5, and 7 in Fig. 2 are omitted

for k = N+I, N+2, ... , 2N-1. Next, P(2N/2N), the covariance of the

error in the state estimate R(2N/2N) at the end of this cycle, is cal-

culated from

P(2N/2N) P(2N/N) - P(2N/N)HT(2N) N + H(2N)P(2N/N)H
T (2N)]-1

H(2N) P(2N/N) , (43)

where

P(2N/N) = 2N,N) PNN)T(2N,N) + Q'(N)NAt (44)

and

(2N,N) = I + F[_(N/N)INAt

Whenever k is a multiple of N, this cycle is repeated in the

manner outlined above.

The use of the piecewise-recursive Kalman filter results in a

reduction of computational requirements whenever N -a 2 (i.e.,

Ar > 2 At). The reason for this is that the modified algorithm nearly

doubles the number of numerical calculations, with respect to the

basic Kalman filter presented in Fig. 2, whenever k is a multiple of

N; but for the next N-I sample points, the filter's weighting matrix

is fixed so that the number of numerical calculations is very small for

these iterations. Thus, there is no computational advantage of this

algorithm unless N _ 2.
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The expected decrease in the computational time for the piecewise-

recursive Kalman filter is a function of the size of AT relative to

At, as well as the value of At. Let S be the ratio of the compu-o

tational speed of a Kalman filter using a precomputed weighting matrix

to the computational speed of the fully implemented Kalman filter at

the same data rate (S is independent of the sample interval At).

Since the piecewise-recursive Kalman filter described above is equivalent

to using a precomputed weighting matrix for N-1 iterations (where

N = AT/At) before a new weighting matrix is computed, this filter is S0

times faster than the fully implemented Kalman filter for these N-I

iterations. As shown above, for the first iteration of each cycle of

N iterations, the piecewise-recursive Kalman filter is approximately

twice as slow as the fully implemented Kalman filter. Thus, if AtK  is

the computational time consumed by the fully implemented Kalman filter

for one iteration, then the time consumed by the piecewise-recursive

Kalman filter is approximately 2 AtK if the iteration is the first in

the cycle of N iterations, and AtK IS if the iteration is one of

the remaining N-1 iterations before a new weighting matrix is calcu-

lated.

Since the total computational time for N data points with the

fully implemented Kalman filter is NAtK, and with the piecewise-recursive

Kalman filter it is 2AtK + (N-l) AtK/Sol it follows that the ratio of

their average iteration times is approximately

2At K + (N-l) AtK/S °  (45)

N AtK

Thus, the speed of the piecewise-recursive Kalman filter, relative to

the fully implemented Kalman filter, is approximately

NS
S 0SN = 2S + (N-l) (46)

0

If the speed of the fully implemented Kalman filter relative to

real time (when the sample interval is At ) is SR , then its speed

relative to real time when the sample interval is At will be
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SAt (47)
R At

0

Consequently, the speed of the piecewise-recursive Kalman filter with

respect to real time will be approximately

S = Sf-t-t o (48)NAt R ) 2S + (N-l)

As an illustration of the expected computational advantages in

endoatmospheric estimation of such a filter design using the Univac 1108

at a sampling interval of At = 0.05 sec, the fully implemented Kalman0

filter is about 5 times faster than real time (i.e., SR = 5); Table I

indicates that the speed of a Kalman filter using a precomputed weighting

matrix relative to the fully implemented Kalman filter is about 15

(i.e., = 15). Incidentally, it should be noted that SR is computer-

dependent, whereas S is not. Thus, for the endoatmospheric estimation

on the Univac 1108, SN,At is given by

S 5 At 15N I (49)
N)At \tL 3 0 + (N-1)j

Note that S N,At the speed of the piecewise-recursive Kalman filter

relative to real time, increases linearly with At; for fixed At it is

bounded by the speed of a Kalman filter with a precomputed weighting

matrix.

To obtain some measure of the improvement in the computational

speed for the endoatmospheric cases, let us calculate, using Eq. (49),

the iteration times for various values of N = - . The average time
At

for one iteration on the Univac 1108 is given by At/SN,At ; thus, for

N = 5, 10, 20, and 30, we obtain the average iteration times of 0.0045,

0.0026, 0.0016, and 0.0013 sec, respectively. (Recall that the iteration

time for the fully implemented Kalman filter is 0.0100 sec.) These

estimates of the average iteration time for the piecewise-recursive

Kalman filter are in very close agreement with the actual values found

experimentally as will be shown in Sec. V. For exoatmospheric estima-

tion, the average iteration times of the piecewise-recursive Kalman

filter (for various values of N = ) are given in Sec. VI.
At
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In Secs. V and VI, we will verify the expected computational ad-

vantages of the piecewise-recursive Kalman filter and investigate the

performance of this filter for endoatmospheric and exoatmospheric esti-

mation.

Since the piecewise-recursive Kalman filter algorithm essentially

employs a weighting matrix whose elements are piecewise-constant

fuhctions of the time k, one could theoretically determine the optimal

values of the weighting matrix elements, subject to this piecewise-

constant constraint. This appears to be a difficult problem to solve

analytically. The piecewise-recursive Kalman filter described here can

be considered as an approximate solution to this problem.

V N RICAL RESULTS FOR ENDOATMOSPHERIC TRAJECTORY ESTIMATION

A. Description of the Test Cases and Filter-Design Parameters

Data from two representative endoatmospheric trajectories generated

by simulation using an accurate model of reentry dynamics6 was used to

evaluate the performance of the piecewise-recursive Kalman filter des-

cribed in Sec. IV. The computer program used in generating these

trajectories was developed by M.I.T. Lincoln Laboratory.

The reentry angle for both trajectories is approximately 220.

Case 1 is a trajectory of a high-$ missile, which is tracked starting

at an altitude of about 205,000 ft. This trajectory impacts approximately

at the radar site. Case 2 is a trajectory of a low-B missile, which is

tracked from an altitude of about 153,000 ft. This trajectory impacts

about 80,000 ft east and 30,000 ft north of the radar site. Cases 1

and 2 are essentially the same as Cases 1 and 4, respectively, of Ref. 1.

The filtering computations start with an initial state estimate
(0/0) and its error covariance matrix P(0/0). The initial state

estimates for the endoatmospheric cases, generated as in Ref. 7, are
given in Table II.

Based on the work presented in Ref. 1, the initial error covariance

(for the endoatmospheric trajectories) is chosen to be the 7 X 7

diagonal matrix
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io 6  o10 
6

10 6 0

P(0/0) = 106 (50)~10 6

o6i 106

0 5 X 10 - 2 1

The measurement-noise covariance R(k) is obtained from a model of

actual radar noise characteristics of the MSR based on work by Bell

Telephone Laboratories.e The expressions for the eleL-ents of this co-

variance are found in Ref. 9. This radar model is used to generate the

measurement noise of Eq. (12) in the simulation. Observations may be

taken as often as every 0.05 sec for the endoatmospheric cases, but the

filter may process fewer measurements than are taken (i.e., At 0.05

sec).

Table ii

INITIAL CONDITIONS FOR ENDOATMOSPHERIC TRAJECTORIES

xI  x2  x3  x 4  x5  x6  x7

(fit) (ft) (It) (f t/see) (ft. 'sec) (ft. sec) (lb. ft2)

CASE 1

ACTUAL x(0) 338110 338110 199910 15297 15297 8653 4.395 x 10-

ESTIMATE. i(0/0) 290952 292135 199911 16046 14466 12751 6.118 x 10-O

ERROR 47158 45975 1 749 831 4098

CASE 2

ACTUAL x(0) 80000 360440 149910 0 21633 8653 7.950 x 10-'

A

ESTIMATE _(o 0) 80093 318857 149842 1187 20891 11592 2.376 x 10- 9

ERROR 93 41583 68 1187 742 2939
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The random disturbance covariance Q(k) [see Eqs. (15a) and (15b)],

compensates for the model inaccuracies as described in Sec. II A. Based

on studies described in Ref. 1, this covariance (for the endoatmospheric

trajectories) is chosen to be the 7 x 7 diagonal matrix

0
0

Q Wk

=~) Q'(k) 50 0(51)

At0 

50

Q 77(k)

where

3.2X10 1  , x3 -160000

1.0XI0 18  
,95000!53<160000

Q7 7 (k) = 2.2Xo-15 exp(-5xlo-5 3) ,2500053< 95000

2.2xlO-15[l+l.5xlo 3 (2.7xlo4 -3 )Iexp(-5xlO - ),14700! 3 < 25000

3 3 3~3.6xlO-14[l+l.SxlO-3 (2. 7xlO4-i3)]exp(-5xl- 5 ), c3< 14700

and x is the present vertical distance estimate.
3

B. Performance of the Fully Implemented Extended Kalman Filter

For the endoatmospheric trajectories, the standard which is used to

evaluate the performance of the piecewise-recursive Kalman filter is the

fully implemented (extended) Kalman filter with a sample interval of

At = 0.05 sec. The recursive equations for the extended Kalman filter

are given in Sec. III A. This filter was used to estimate the ballistic

trajectories for Cases 1 and 2 using simulated trajectories and measure-

ment noise. The filter yields state estimates R(k/k) at sample

intervals of At = 0.05 sec.

The magnitudes of the measurement errors in position are shown in

Figs. 3a and b for Cases 1 and 2. In order to relate altitude and time,

these magnitudes are plotted as a function of both variables; in all

other figures, the plots are a function of time only. Figures 4a, b,

and d show the magnitudes of the estimation errors for position, velocity,

27



40

2,

C,

-4 u

cJwJ

00
0

z

8 0

LU

155

C-i 0

0z
clLU

; -~ XMNM S

'8*28



j o

cvU

Ii,

0 0 0

to V- N - :

a, U

I -I LU
L IU

U,~

L-

0
ww

o w 0 w -

zto to w

w)
-j

'T-

C~j t to 0
I; W 3 NOIIS~ 1; ql -V13

29K 1



and acceleration, respectively, for Case 1. Figure 4c shows both

actual and estimated 0, where the estimated 6 is obtained by assuming

8(k/k) = o[fi(k/k)I/J7(k/k) in which )i(k/k) is the estimated altitude
7

obtained from Eq. (2). It should be noted that acceleration is not

computed directly by the filter but is calculated from the state esti-

mate using Eqs. (1) of Sec. II A. Figures 5a, b, c, and d show the

corresponding estimation errors for Case 2.

Note that after 3.5 sec of filtering, the magnitude of the errors

in estimated position in both cases is never any worse than 830 ft (and

in Case 1, the initial position error is approximately 65,000 ft).

After 3.5 sec, the magnitude of error in estimated velocity ia both

cases is never any worse than 285 ft/sec. The magnitude of error in
2

estimated 3 for Case 1 is never more than 665 lb/ft , and for Case 2
2

it is never more than 105 lb/ft after 3.5 sec of filtering.

C. Performance of the Fully Implemented Extended Kalman Filter with
Different Data Rates

The simplest scheme for improving the real-time capability of the

Kalman filter is simply to decrease the data rate. If the sample

intervals are lengthened and the additional time between samples is not

used to presmooth the measurements (i.e., the intermediate measurements

are discarded), then obviously the filter performance will deteriorate

to some extent. Reference 1 discusses the performance of the extended

Kalman filter for four representative endoatmospheric cases. However,

no attempt was made in Ref. 1 to investigate the effect of both de.reasing

the data rate and presmoothing the intermediate measurements. The present

study considers the situation where the presmoothing is done by fitting

the data to a curve that approximates the trajectory of the ballistic

missile. Of course, in practice, data is presmoothed oy curve-fitting

with polynomials that are not precise representations of missile tra-

jectories.

The assumption of data presmoothing implies that in the filter

equations the measurement-noise covariance should be reduced accordingly.

If the measurement-noise covariance at a particular time is R0 (k) for

a sample interval of Ato, then one approximation to its reduced value,
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with a larger sample interval At and with presmoothing, is

At
0

R(k) = °(k) . To see how this is derived, suppose that the measure-

ment vector is a linear function of time ti  in the interval ft

tk + At] with additive noise vi (i.e., z. = P + sti + v!), and its

rate of change, s, at t = t is known (equivalently, our estimate
k

of the velocity s equals its actual value). Now, we estimate the

unknown parameter p by subtracting stI  from the measurements at the

times ti = t t + Atop t + 2Ate, ..o t + At (where At = n At )
i ki k o k ok 0

and average the resulting quantities. Let f designate the computed

average and z(t + At) = p + s(t + At) be the presmoothed version of
k k

the measurement z(t + t), where v is zero mean.
k i

Noting that E[pI = p, the covariance of _ is seen to be given by

T T
Cz(z - Erz])(z - E[z]) I = Ef(p - E[p])(p - E[_] I

Ef p v - 1- ( +V Pn nE([(- (P + v) -p P] r(P +v i ) - ]T
i i=l

n n

n T. 
t

I Evi v~J , since Evv] = 0 for i~j

n i=l

n

At0 (52)
At

where R0 , the covariance of the measurement noise vi, is assumed

constant over the interval [t t + At].
k'

In the computer simulations done for this report, the presmoothing

of the measurements was simulated by scaling the measurement noise by

the factor FAto/At . This corresponds to decreasing the measurement

noise covariance by the factor Ate/At. It should bf noted that this

presmoothing assumption is overly optimistic.

The estimation error plots of Figs. 6 through 11 illustrate the

effects of data presmoothing upon the extended Kalman filter's performance

for Case 1. Figures 6, 8, and 10 show the effects of increasing the
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sample interval (decreasing the data rate) from At = 0.05 sec to At = 0.10,

0.25, and 0.50 sec, respectively, when no data presmoothing is done. In

other words, the filter's data rate is decreased by processing fewer mea-

surements in any given time. Figures 7, 9, and 11 show the effects of

increasing the sample interval of the filter from At = 0.05 sec to At = 0.10,

0.25, and 0.50 sec, respectively, while also using the increased time be-

tween samples to presmooth the measurement data. The presmoothing assump-

tions described above are used for the results presented in Figs. 7, 9,

and 11.

Figures 6, 8, and 10 indicate that if presmoothing is not done the

estimation errors become increasingly larger as the filter's sample

interval At is increased. However, Figs. 7, 9, and 11 indicate that

if the data is presmoothed the position and velocity estimation errors

generally decrease with increasing At. Thus, the reduction of the

measurement noise through presmoothing is beneficial in position and

velocity estimation.

The random disturbance covariance Q(k) given by Eq. (51) is

seen to increase linearly with increasing At. For ballistic coefficient

and acceleration estimation, this increase in Q(k) apparently domi-

nates the decrease in the measurement noise covariance R(k) when the

data is presmoothed. That is, the errors in the and acceleration

estimates, as shown in Figs. 7, 9, and 11, increase with increasing At,

even with presmoothing of the data. Hence, increasing the sample

interval generally leads to a deterioration in ballistic coefficient

and acceleration estimation. This is to be expected since the square

root of Q 77(k) (see Eq. (51)), which is the standard deviation in the

assumed random disturbance noise affecting x7 , is of the same order of

magni:ude as the actual values of x7 ; whereas, the standard deviation

of the positon disturbance noise is zero, and the standard deviation of

the velocity disturbance noise is very small in relation to the actual

velocity values [see Eq. (51)]. Since the ballistic coefficient B is

derived from x7  (i.e., B = p/x 7), the random disturbance affecting

x7  is of major importance in estimating 0. Consequently, since Q7 7 (k)

increases linearly with the sample interval At with or without pre-

smoothing, it follows that estimation errors are expected to increase

39
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with increasing At. In turn, the errors in ballistic coefficient estima-

tion lead to errors in the estimate of acceleration, since the aerodynamic-

drag accelerations are in error.

For Case 1, the pairs of Figs. -6 and 7, 8 and 9, 10- and 11 illustrate

the extended Kalman filter performance, with and without data presmoothing,

-for sample intervals of At 0.10, 0.25, and 0.50 sec, respectively. As

notedabove, the -presmoothing assumption of Eq. (52) is optimistic; and-

for a given' At, the filter estimation errors for actual presmoothiing will °

be somewhere .between the errors given in the corresponding pair of figures.

Thus, for the particular simulations presented here, we have bounded the I
filter estimation errors ifor different values of At.

Figures 12 a, b, and c show the standard deviations in theestimates I
of position, velocity,, -and 8 as computed from thediagonal-elements of

the calculated estimation error-covariance [Eq. (29)]. Each of the Figs.

12 a-, b- And -c shows. two curves: Curve -(i)-is the calculated standard

deviation when data is not presmoothed, and Curve (ii) is the calculated]

standard'deviatiOn when presmoothing has beenperformed; these plots are

for Case , with a sample interval of At = 0.25 sec. The standard

deviation in position error is calculatedCas the square root of the sum

of the first three diagonal elements of the filter covariance matrix,

P(k/k). That is, the standard deviation of position error is given by

- p + p . Likewise, the standard deviation of velocity errorPpi, 22 P33

is calculated as +P + P " The standard deviation for the
as 4 "' 55 66

error in 0 estimation- is calculated using a rough approximation. The

- ballistic coefficient 0 is not estimated directly, but is derived from

S7" Since x7  is defined as x7 = p/0 (with p = mass density of -the

atmosphere), it follows that 0 = p/x7 . To first order, we have

- =-- (x 7 - X)7

-x 
7 - A

so that a rough approximation for the standard deviation of B is
S2 " P77

7 )
in which P77 is the seventh diagonal element of P(k/k) and 8 = p(h).

in whch P77

The standard deviation plots of Fig. 12 a, b, and c provide a

valuable measure of the filter's performance. For instance, if the
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:magnitude, of -the position estimati-on, error diff ers signif-icaiitly -finmI -the'-ca~cujlatud -standard -deviation of the position' error [as com~puted
f-romi SPQ/k)j, then -the filter is doing the estimation, task, poorly--

perhapgs-because of iniccurate modeling-of the, mi'sile dynamics: or

measurement noise in the filter equations. Also, when -,re6smoothinig f

the, measuriients leads to a reduction in-the-magnitude of the .6stiimation

rrs, -the calculated, standard deviations shouild,.also .4how a reduiction.

Figure' 12 -shbw's that the-calculated standard deviations [.derived from.,

P(k/k)) ire in correspondence-With the actual estimation error 5magpitudiii

4(both with and without -piesmoothifig) ., Also,, the standard- deviations in

Position,-and velocity estimation errors are reduced (as-expected) 'when

Idata is,,presmoothed. Comparisbn -of 'Figs. -8S and 9 With, Fig. 1?. reve1als

thatt-the actual estimation errors are less than ~two standard deviations

-for almost all of the filtering time.

- -~Figures 13 -a, b, and c sh~w the, 'tahdard dleviati6ns' in- position,

V ~elocity., and 8 estimation errors for -(k), a samnple,. interal -of '0.05

see, and .(11) a, saviple Interval of 6,.50 sec; duiVes- Wi -arnd (i i), re for

-Case 1 with. no data presmoothinig. Again, the standard deviation plots,

1agree with the actual estimation err6r magnkitudes. -For -instance,'1comparison of.Figs. 4- and 10-with Fig. 13 shows that the poi't16fi esti-

mat ion error magnitude -increases when At is -increased f rom, 0.5-eto

10.50 see, but this is to be-expected §inc6, withno presmoothing, the
* calculated position standard deviation '(Fig, 13: a)' also increas6'.

Figures 14 through 19 show the estimation error magnitudies-wilen

the. sample interval 'length is increased from At = 0.05 sec to At ---0.10,

0.25, and 0.50 sec for Case 2. Estimation error magnitudes are pre-

sented for the situation where there is presmoothing of measurements and

also where there is no presmoothing.. The conclusions are similar to

those drawn for Case -1 fromn Figs. 6 lzhrough -11.

Figure 20 shows the effect of presmoothing upon the calculated

-~ standard deviations of the estimation errors for a slample interval -of

- ' At = 0.25 sec in Case 2. Again, the conclusions are- the saine as those

* drawn for Case 1 from Fig. 12.
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Figure 21 shows the effect (for Case 2) upon the calculated

standard deviations in the estimation errors of decreasing the data rate.

The plots show. the effect of decreasing the data rate from 20 -measure-

ments per second to 2 measurements per second--when there is no measure-

ment presmoothing. Again, the conclusions are the same as those drawn

for Case 1 from Fig. 13.

'A recent study6 discusses the sensitivity of the Kalman-filter

performance to changes in the sample interval At. In particular, the

effects of data presmoothing are discussed there. It was shown that the

presmoothing assumed .here tends .to be overly optimistic; since any

change of the noise assumptions tends to cause the filter performance-to

deteriorate, fiom its performance with the assumed presmoothiig [Eq. (52) 1.

D. Performance of the Piecewise-Recursive Kalman Filter

The figures and timing estimates given below indicate- that the

piecewi-se-recursive Kalman filter (described in Sec. IV) is an extremely

attractive alternative to the fully implemented (extended) Kalman filter

for real-time endoatmospheric estimation. Using this filtering method',

it is possible to obtain large reductions in computation time with little

sacrifice in estimation accuracy,. With the Univac 1108 computer, it is

possible (as shown below) to filter measurements at a speed approximately

25 times faster than real time for endoatmospheric estimation, and yet

obtain accuracy approaching that of the fully implemented Kalman filter.

Since the fully implemented Kalman filter is approximately five

times faster than real-time (see Sec. III C) on the Univac 1108 for

endoatmospheric trajectory estimation (At = 0.05 sec), this means that

the piecewise-recursive Kalman filter is about five times faster than

the fully implemented Kalman filter (the relative speed of the two

filters is computer-independent). With the Univac 1108 Computer, a

total time of 0.010 sec is needed to process each measurement and com-

pute an estimate of the state of the ballistic missile (as well as the

estimation error covariance) using the fully implemented Kalman filter.

When the piecewise-recursive Kalman filter is used for the estimation,

two timing figures should be noted. This arises from the fact (as dis-

cussed in Sec. IV) that there are two different modes of operation for the
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piecewise-recur.ive Kalman filter: in the first mode, the filter cal-

culates a weighting matrix, two error covariance matrices, and a state

estimate; in the second mode, the filter only calculates a state esti-

-mate-without the weighting matrix or error covariance computations being

performed.

From the simulations on the Univac 1108 for the endoatmospheric

cases, it was found that in the first mode, the piecewise-recursive

Kalman filter used an average of 0.0173 sec per iteration, while it used

an average of only 0.0007 see per iteration in the second mode. Since

on the Univac 1108 a filter iteration takes 0.0100 sec using the fully

implemented (extended) Kalman filter, this means that in the first mode,

the piecewise-recursive Kalman filter is approximately 1.7 times slower

than the fully implemented Kalman filter; however, in the second mode,

the piecewise-recursive Kalman filter is about 14 times faster than the

fully implemented Kalman filter. The piecewise-recursive Kalman filter

encounters a first-mode calculation once every AT seconds; and if

N = AT/At, it encounters a second-mode calculation N-1 times during a

time span of AT seconds. Thus, for large values of N, the speed of

the piecewise-recursive Kalman filter in the second mode predominates

over that of the first mode. For the endoatmospheric trajectories, the

average iteration time of the piecewise-recursive Kalman filter as a

function of N (for the values of N encountered in the computer simu-

lations) is given in Table III.

Using the values in Table III, one can calculate the average speed

of the piecewise-recursive Kalman filter relative to real time for dif-

ferent AT and At. For instance, if AT = 0.5 sec and At = 0.10 sec,

then the speed of the filter is about 25 times faster than real time (on

the Univac 1108); if AT = 0.5 sec and At = 0.05 sec, then the speed of

the filter is about 20 times faster than real time (on the Univac 1108).

Thus, the piecewise-recursive Kalman filter can, on the average, process

incoming measurements 20 to 25 times faster than they are received.

Effectively then, one Kalman filter of this type could give state esti-

mates for 20 to 25 endoatmospheric ballistic targets in real time.
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Table III

ITERATION TIMES FOR- PIECEWISE-RECURSIVE KALMAN'FILTER
(ENDO'ATMOSPHERIC CASES)

AVERAGE FILTER ITERATION TIME ITERATION TIME
N ITERATION TIME IN FIRST MODE IN SECOND MODEAt(sec) (,iec) (sec)

3 0.0061

5 0.0040

6 0.0035
-0 0.0173 0.0007

10 0.002;4

15 0.0019

20 0.0016

30 0.0013

Now, let us discuss the accuracy of the state estimation using the

piecewise-recursive Kalman filter. It should be pointed out that in all

of the figures of this section (for both Case 1 and Case 2) the filter

was allowed to operate as a fully implemented Kalman filter for the first

four iterations; this operation serves as an initialization for the

piecewise-recursive Kalman filter. The estimation errors obtained

through simulation for Case I are exhibited in Figs. 22 through 27.

Figures 22, 23, and 24 show the estimation errors for AT = 0.5, 1.0,

and 1.5 sec, respectively, when the sample interval is At = 0.05 sec.

Figures 25, 26, and 27 show the estimation errors for AT 0.5, 1.0,

and 1.5 sec, respectively, when the sample interval is At = 0.10 sec,

and there is no data presmoothing. The estimation errors exhibited in

Figs. 22 through 27 indicate that, for Case 1, the piecewise-recursive

Kalman filter has acceptable performance for AT as large as 1.5 see,

with At = 0.05 or 0.10 sec.

Recall that the error magnitudes plotted in Fig. 4 for the fully

implemented (extended) Kalman filter with a sample interval of At = 0.05

sec show that after 3.5 sec of filtering, the error in estimated position
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is less than 830 ft, the error in estimated velocity is less than
2

285 ft/sec, and the error in estimated 6 is less than 665 lb/ft

Figures 22 through 27 indicate that for Case i the piecewise-recursive

Kalman filter estimation errors do not converge as rapidly as those of

the fully implemented Kalman filter; however, in the worst case, the

position estimation errors are less than 830 ft after 6.2 sec, the

velocity estimation errors are less than 285 ft/sec after 8.1 sec,
2

and the 6 estimation errors are less than 665 lb/ft after 12.0 sec.

Figure 28 shows the standard deviations (for Case 1) of position,

velocity, and a estimation errors [as calculated from P(k/k)] for

(i) the fully implemented Kalman filter with a sample interval,

At = 0.10 sec, and (ii) the piecewise-recursive Kalman filter with

At = 0.10 sec and AT = 1.0 sec. These two curves indicate that the

assumption made in Eqs. (36) and (37) of Sec. IV concerning the approxi-

mation of the filtering done by the piecewise-recursive Kalman filter

is valid. Specifically, we had considered the filtering done with a

fixed weighting matrix as being equivalent to measurement presmoothing,

so that when the estimation error covariance matrix was updated [see

Eq. (37)j, the calculation used a measurement-noise c'jvariance reduced

to R(k)At/Ar. The validity of this assumption is verified in Fig. 28,

since each new calculation of the estimation error covariance at inter-

vals of AT seconds gives a decrease to nearly the value of the

covariance matrix obtained with the use of the fully imple'nented Kalman

filter when it is calculated at intervals of At seconds.

Figures 29 through 34 show the estimation error magnitudes obtained

through computer simulation for Case 2. Figures 29, 30, and 31 show the

estimation errors for AT = 0.5, 1.0, and 1.5 sec, respectively, when

the sample interval At = 0.05 sec. Figures 32, 33, and 34 show the

estimation errors for AT = 0.5, 1.0, and 1.5 sec, respectively, when

the sample interval is At = 0.10 sec. For Case 2, we see from Figs. 29

through 34 that for either At = 0.05 sec or At = 0.10 sec, the filter

performance deteriorates as AT increases from 0.5 sec to 1.5 sec.
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Figure 35 shows the standard-deviations (for Case 2) of position,

velocity, and 8 dstimation errors (as calculated from P(k/k)] for

W () the fully implemented Kalman filter with a sample interval of

At = 0.10 sec,, and (ii) the, piecewise-recursive Kalman -filter with
I At 0".I0-sec and AT 1.0 sec. As in Case 1, Fil. 35 indicates that

the assumption concerning the approximation of the measurement-noise

covariance ion error coVarance forithe piecewise tt
Srecursive fitris-valid for Case 2

In summary, the computer-simulations indicate that for endoatmospheric

-estimation the accuracy of the piecewise-recursive Kalman filter is.

comparable with that of the fully implemented Kalman filter, and that it

offers significant savings in computation time.

VI NUMERICAL RESULTS FOR EXOATMOSPHERIC ESTIMATION

-A. Description of the Test Case and Filter Design Parameters

Data from a representative exoatmospheric trajectory generated by

simulation using an accurate model of reentry dynamics was used to

evaluate the performance of the piecewise-recursive Kalman filter

described in Sec. IV. The computer program used in generating this

trajectory was developed by M.I.T. Lincoln Laboratory.

In this report, the exoatmospheric test trajectory will be referred

to as Case 3. It is a minimum-energy ellipse having a range of approxi-

7
--mately 2.6 X 10 ft (4300 nmi) from launch to impact, with a reentry

angle of about 230. This trajectory is estimated from a range of
1-- ~6 6

9.4 X 10 ft (1600 nmi) to a range of 0.4 X 10 ft (66 nmi), which

corresponds to an altitude of approximately 370,000 ft for the particular

geometry of this case.

At altitudes greater than 300,000 ft, the atmospheric drag is

negligible; hence, in the filter's model for the equations of the bal-

listic missile, the drag terms have been dropped [see Eqs. (1) in Sec.

II A]. Thus, the state variable x7 , which contains 8, can also be

eliminated; of course, the dimensions of the system matrices ( , H, W,
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Q, and P) are modified accordingly. Due to numerical dlifficulties that

were encountered in calculating the covariance matrices, the filter was

programmed in double precision for exoatmospheric estimation.

The filtering computations start with an initial state estimate

_(0/O), which is now- a six-dimensional Vector, and its error covariance

P(/O). The initial state estimates for the exoatmospheric case are

given in Table IV.

Table IV

INITIAL CONDITIONS FOR EXOATMOSPHERIC TRAJECTORY

I  2  x3  4  xx 6

(ft x 106) (f t x 106) (ft x 1061 (ft/sec) (ft/sec) (ft/sec)

CASE 3

ACTUAL: x (0) -6.01 7.04 1.73 11500 -12200 3020

ESTIMATE: x(0/0) -6.10 7.14 1.63 12300 -11420 3268

JERRORI 0.09 0.10 0.10 800 780 248

The initial error covariance (for the exoatmospheric trajectory)

was determined experimentally to be the 6 x 6 diagonal matrix

12
10

10 12
120

10(P(0/0) 6 53
10

106 _

The measurement-noise covariance R(k) is based upon a model of

actual radar-noise characteristics of the PAR; the model was obtained

by making suitable modifications of the results presented in Ref. 9.
This radar model is used to generate the measurement noise of Eq. (12)
in the simulation. Observations may be taken as often as every second
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for the exoatmospheric case, but the filter may process fewer measure-

ments than are taken (i.e., At a 1.0 sec).

The random disturbance covariance Q(k) [see Eqs. (15a) and (15b)]

compensates for model inaccuracies as described in Sec. II A. This

covariance was determined experimentally to be the 6 X 6 diagonal

matrix

0 1= Q, (.) = 1 (54)

At L 5050501

B. Performance of the Fully Implemented Extended Kalman Filter

For the exoatmospheric trajectory, the standard used to evaluate

the performance of the piecewise-recursive Kalman filter is the fully

implemented (extended) Kalman filter with a sample interval of At = 1.0

sec. The recursive equations for the extended Kalman filter are given

in Sec. III A, with the system matrices (§, H, W, Q, and P) modified

appropriately. This filter was used to estimate the ballistic trajectory

for Case 3, using the simulated trajectory and measurement noise. The

filter yields state estimates (k/k) at sample intervals of At = 1.0

sec.

RANGE-ft x 106
9 8 7 6 5 4 3 2 I

0 TiT~n'i i III i

0 100 200 300 400 500

TIME-sec
T. 88-&O0

FIG. 36 MEASUREMENT NOISE - CASE 3
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The magnitude of the measurement error in position is shown in Fig. 36

for Case 3. In order to relate range and time, the measurement error is

plotted as a function of both variables; in all other figures, the plots

are a function of time only. Figures 37 a, b, and c show the magnitude

of the estimation errors for position, velocity, and acceleration,

respectively, for Case 3. It should be noted that acceleration is not

computed directly by the filter but is calculated from the state estimate

using Eqs. (1) of Sec. II A. Additionally, as noted above, B is not

estimated for the exoatmospheric case.

From Fig. 37, it can be seen that after 30 sec of filtering, the

magnitude of the error in estimated position is less than 6,000 ft (for

Case 3, the initial error in position is 167,000 ft); after 170 sec, the

position error is less than 2,000 ft. After 30 sec of filtering the

magnitude of the error in estimated velocity is less than 200 ft/sec

(for Case 3, the initial error in velocity is almost 1200 ft/sec); after

100 sec, the velocity error is less than 50 ft/sec.

C. Performance of the Fully Implemented Extended Kalman Filter with
Different Data Rates

As discussed in Sec. V C, the simplest scheme for improving the I

real-time capability of the Kalman filter is simply to decrease the data

rate. If the sample intervals are lengthened and the additional time

between samples is not used to presmooth the measurements (i.e., the

intermediate measurements are discarded), then obviously the filter

performance will deteriorate to some extent. The present study also

considers the situation where there is presmoothing of the measurements.

In practice, data is presmoothed by curve-fitting with polynomials that

are not precise representations of missile trajectories.

The assumption of data presmoothing implies that in the filter

equations the measurement-noise covariance should be reduced accordingly.

In the computer simulations done for this report, the presmoothing of

the measurements was simulated by scaling the measurement noise by the

factor At/It . This corresponds to decreasing the measurement-noise

co','ariance by the factor At /At. A justification for the approximation
0

is pA:sented in Sec. V C, although it should be noted that this pre-

smoothing assumption is overly optimistic.
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The estimation-error plots of-Figs. 38 through 41 illustrate the

effects, of data presmoothing. upon -the extended .Kalman. filtert - perfor-

mance for Case 3. Figures 39 and 41i show. the effects of increasingthe

sample interval (decreasing the data rate) from At =1.0-sed to

At =- 2.0 and 5.0 sec, respectively, while also using the increased time

between samples to prsmooth the measurement data. The presmoothing

assumptions described above, are used f or the, results presented in

Figs. 39, and 41.

Figures 38 ands°40 indicate that without presmoothing the estimation

errors become increasingly larger as the filter's sample interval At

isincreased. However, Figs. 39 and 41 indicate that if the data is.

"resmoothed the position and velocity estimation errors geherally

decrease with increasing At, Thus, the reduction of the measurement

noise through presmoothing is beneficial in position- and velocity esti-

mat ion.

The pairs of Figs. 38 and 39, 40 aid 41. illustrate the extended

Kalman-filter performance, with and without data presmoothing, for

Sampre intervals of At = 2.0 and 5;0,sec, respectively. As noted

above, the presmoothing assumption-is optimistic anid for a given At,

the filter estimation errors for actual presmoothing will be somewhere

between the errors given in the corresponding pair of figures. Thus,

for the particular simulations presented here, we have bounded the

filter estimation errors for different values of At.

Figures 42 a and b show the standard deviations in the estimates of5

position and velocity as computed from the diagonal elements of the

calculated estimation error covariance [Eq. (29)]. Each of the Figs. 42

a and b shows two curves: Curve (i) is the calculated standard devia-

tion when there is no data presmoothing, and Curve (ii) is the calculated

standard deviation when there is presmoothing; these plots are for

Case 3, with a sample interval of At = 5.0 sec. The standard deviation

in position error is calculated as the square root of the sum of the

first three diagonal elements of the filter covariance matrix, P(k/k).

That is, the standard deviation of position error is given by
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P3 Likewise, the standard deviation, of velocity error

is calculated as +T + 6  j

-Figure 42 shows that the calculated standard deidations [derived- "i

from P(I.kk)] are in corresp6ndence with the actual estimation error-

magnitudes (both with and without presmoo thing). Also, the standard

deviations in position and velocity-estimati6n errors are reduced (as

expected)'when-there is presmo6thing.

Figures 43 a and b show the standard deviations ift position and

velocity estimation errors for (i) a sample interval of 1.0 sec ,and-

(ii) a sample interval of 5.0 sec; Curves (i)-and-(ii)- are for Case 3

with no data presmoothing. Again, the standard deviation plots agree

with the-actual estimation error magnitudes, For instancei comparison,

-of Fi;.. 37 and 40 with Fig. 43 shows that the position estimation error

magnitude increases when At is increased from l.0-se-to 5.0 sec, but

this-is to be expected since, with no presmoothiiig, the calculated

position standard deviation [Fig; 43 a] also increases.

D Performance of. -the. Piecewise-RecursiveKaLmin.Filter

The figures and timing estimates given .below indicate that the

piectwise-recursive Kalman filter (described in Sec. IV) is an extremely

attractive alternative to the fully implemented (extended) Kalman filter

for real-time exoatmospheric estimation. Using- this filtering method,

it is possible to obtain large reductions in computation time with little

sacrifice in estimation accuracy. With the Univac 1108 computer, it is

possible (as shown below) to filter measurements at a speed approximately

500 times faster than real time for exoatmospheric estimation, and yet

obtain accuracy approaching that of the fully implemented Kalman filter.

Since the fully implemented Kalman filter is approximately 100 times

faster than real-time (see Sec. III C) on the Univac 1108 for exoatmos-

pheric trajectory estimation (At = 1.0 sec), this means that the piecewise-

recursive Kalman filter is about 5 times faster than the fully implemented

Kalman filter (the relative speed of the two filters is essentially

computer-independent). With the Univac 1108 Computer, a total time of

0.011 sec is needed to process each measurement and compute an estimate
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of the state of the ballistic missile (as well as the estimation error

covariance) using the fully implemented Kalman filter. When the

piecewise-recursive Kalman filter is used for the estimation, two

timing figures should be noted. This arises from the fact (as discussed

in Sec. IV) that there are two different modes of operation for the

piecewise-recursive Kalman filter: in the first mode, the filter cal-

culates a weighting matrix, two error covariance matrices, and state

estimate; in the second mode, the filter calculates only the state

estimate, without the weighting matrix or error covariance computations

being performed.

From the simulations on the Univac 1108 for the exoatmospheric

case, it was found that in the first mode, the piecewise-recursive

Kalman filter used an average of 0.0200 sec per iteration, while it

used an average of only 0.0010 sec per iteration in the second mode.

Since a filter iteration on the Univac 1108 takes 0.0110 sec using the

fully implemented (extended) Kalman filter, this means that, in tile

first mode, the piecewise-recursive Kalman filter is approximately 1.8

times slower than the fully-implemented Kalman filter; however, in the

second mode, the piecewise-recursive Kalman filter is about 11 times

faster than the fully implemented Kalman filter. The piecewise-recursive

Kalman filter encounters a first-mode calculation once every &T seconds;

and if N = AT/At, it encounters a sc..rd-,iode calculation N-I times

during a time span of AT seconds. Thus, for large values of N, the

speed of the piecewlse-recursive Kalman filter in the second mode pre-

dominates over that of the first mode. For the exoatmospheric trajectory,

the average iteration time of the piecewise-recursive Kalman filter as a

function of N (for the values of N encountered in the computer

simulations) is given in Table V.

Using the values in Table V, one can calculate the average speed of

the piecewise-recursive Kalman filter relative to real time for different

AT and At. For instance, if / 20 see, and At - 1.0 sec, then the

speed of the filter is about 500 times faster than real time (on the

Univac 1108). Thus, with - = 20 sec and At = 1.0 sec, the piecewise-

recursive Kalman filter can, on the aveiage. process incoming measurements
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Table V
ITERATION TIMES FOR PIECEWISE-RECURSIVE KALMAN FILTER

(EXOATMOSPHERIC CASES)

- AVERAGE FILTER ITERATION TIME ITERATION TIME
N = ITERATION TIME IN FIRST MODE IN SECOND MODE

(sec) (see) (sec)

5 0.0048

10 0.0029

20 0.0020 0.0200 0.0010

50 0.0014

100 0.0012

500 times faster than they are received. Effectively then, one Kalman

filter of this type could give state estimates for 500 exoatmospheric

ballistic targets in real time.

Now, let us discuss the accuracy of the state estimation using the

piecewise-recursive Kalman filter. It should be pointed out that in all

of the figures of this section (for Case 3) the filter was allowed to

operate as a fully implemented Kalman filter for the first 10 iterations;

this operation serves as an initialization for the piecewise-recursive

Kalman filter. The estimation errors obtained through simulation for

Case 3 are exhibited in Figs. 44 through 49. Figures 44, 45, and 46

show the estimation errors for AT = 20, 50, and 100 sec, respectively,

when the sample interval is AT = 2.0 sec and there is no data presmoothing.

The estimation errors exhibited in Figs. 44 through 49 indicate that, for

Case 3, the piecewise-recursive Kalman filter has acceptable performance

for AT as large as 100 sec, with At = 1.0 or 2.0 sec.

Recall that the error magnitudes plotted in Fig. 37 for the fully

implemented (extended) Kalman filter with a sample interval of At = 1.0

sec show that after 30 sec of filtering, the error in estimated position

is less than 6,000 ft and the error in estimated velocity is less than

200 ft/sec. Figures 44 through 49 indicate that for Case 3, the
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piecewise-recursive Kalman filter estimation errors do not converge as

rapidly as those of the fully implemented Kalman filter; however, in

the worst case (At = 1.0 or 2.0 sec and AT = 100 sec) the position

estimation errors are less than 6,000 ft after 230 seez and the velocity

estimation errors are less than 200 ft/sec (except for infrequent

excursions) after 200 sec.

Figure 50 shows the standard deviations (for Case 3) of position

and velocity estimation errors [as calculated from P(k/k)] for (i) the

fully implemented Kalman filter with a sample interval, At = 2.0 sec,

and (ii) the piecewise-recursive Kalman filter with At = 2.0 sec and

AT = 20 sec. These two curves indicate that the assumption made in

Eqs. (36) and (37) of Sec. IV concerning the approximation of the fil-

tering done by the piecewise-recursive Kalman filter is valid. Specifi-

cally, we had considered the filtering done with a fixed weighting

20

W Hi

0 ......... ....... FIG, 50 STANDARD
0 100 .0 300 400 500 DEVIATIONS

TIME-sec FOR PIECEWISE-
RECURSIVE

(a) KALMAN FILTER
- CASE 3,

2000- At - 2.0 sec:
(i) \r 2 sec,
(ii) 20 sec

1 0 0 0

w

0 100 200 300 400 500

TIME-sec

Cb)
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matrix as being equivalent to measurement presmoothing, so that when the

estimation error covariance matrix was updated [see Eq. (37)], the cal-

culation used a measurement noise covariance reduced to R(k) At/AT.

The validity of this assumption is verified in Fig. 50, since each new

calculation of the estimation error covariance at intervals AT sec

gives a decrease to nearly the value of the covariance matrix obtained

with the use of the fully implemented Kalman filter when it is calcu-

lated at intervals of At sec.

In summary, the computer simulations indicate that for exoatmospheric

estimation the accuracy of the piecewise-recursive Kalman filter is com-

parable with that of the fully implemented Kalman filter, and that it

offers significant savings in computation time.

VII CONCLUSIONS AND RECOAENDATIONS FOR FUTURE STUDY

This study has addressed itself to the problem of real-time imple-

mentation of the Kalman filter for estimating ballistic trajectories.

As shown in this study and Ref. 1, the Kalman filter is an extremely

effective algorithm for estimation of ballistic trajectories, although

the computational requirements of the fully implemented Kalman filter

are quite severe. On the Univac 1108 Computer, the fully implemented

Kalman filter runs about five times faster than real time for the endo-

atmospheric cases and about 100 times faster than real time for the

exoatmospheric cases.

In this report, several approaches that may be used to modify the

Kalman filtering algorithm in order to reduce the computational require-

ments are described. The most promising approach of those considered

is the piecewise-recursive Kalman filter, which is described in Sec. IV.

As shown by the numerical results obtained from extensive computer

simulations (see Secs. V and VI), the piecewise-recursive Kalman filter

can process measurements of a single target at a computational speed

(on the Univac 1108) that is about 20 to 25 times faster than real time for

the endoatmospheric cases and about 500 times faster than real time for
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the exoatmospheric cases, and yet obtain estimation accuracy approaching

that of the fully implemented Kalman filter. This increased filter

capability is invaluable for the real-time estimation of multiple targets.

Other investigations that should be performed in order to further

reduce the computation time of the piecewise-recursive Kalman filter are:

(I) Use a piecewise-linear weighting matrix in the filter,

rather than a piecewise-constant weighting matrix as

described in Sec. IV. This approach can be readily in-

corporated into the existing computer program and should

yield significant reductions in computation time for

comparable filter performance by allowing larger values

of AT.

(2) Vary At and/or AT over different portions of the

estimation interval. This approach can be placed upon a

rigorous basis by applying the sensitivity results

obtained in Ref. 6, and it also should reduce the filter's

average computation time per iteration.

(3) Simplify the model of the system equations that is used

in the filter's covariance calculations. As shown in

Table I of Sec. III C, these covariance calculations

comprise the major portion of the computation time per

filter iteration.
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